比甲赛程比甲赛程-比甲赛制
美国大学里的十大联盟是怎么回事
作者:匿名用户
链接:s://.zhihu/question/36668649/answer/68534137
来源:知乎
著作权归作者所有,转载请联系作者获得授权。
看来题主对美国的学校其实并不了解呀。作为时差狗以及NCAA十大联盟(下面简称B1G)球迷,这里就科普一下吧。
十大联盟和常青藤联盟在性质上是一样的吗?除了十大联盟以及常青藤联盟,加大系统,SUNY系统,北美还有哪些类似的校际联盟?
首先我们要捋清概念,因此先答这两个小问题。
1. 本质上来说,是的,B1G和Ivy在性质上是一样的。他们都是NCAA下属的体育联盟。其实这里翻译成“联盟”并不是最妥当的,只是约定俗成而已。最妥当、精确的翻译应该叫做“联赛”或“赛区”才对。就拿足球举例子,如果NCAA是欧足联,那么B1G、Ivy、Pac-12、ACC等等就是相当于英超、意甲、西甲、法甲之类的联赛,而系列碗赛则是类似、欧联、超级杯的大赛。为什么要把美国的这些学校分为不同的联赛呢?因为美国的大学太多了,国土面积也很大,如果不分联赛,所有学校在一起混战,那赛程没法排,路费消耗也太大。因此一些距离比较近、实力也比较近的大学就被一堆一堆地划到一起,形成了联赛。B1G和Ivy实际上是历史非常久远的两个联赛,比NCAA的历史还长。
2. 细节上来说,B1G和Ivy还是有区别的。
第一个区别:他们的级别不一样。B1G是Div-1 FBS(以前叫Div-1 A)里面的顶级的五大联赛之一(B1G、ACC、SEC、Big12、Pac-12),在全国范围内是级别最高的联赛,冠军有直接进季后赛碗赛的资格;而Ivy是Div-1 FCS (以前叫Div-1 AA)的一个联赛,级别不如B1G,差了两级。还是用足球举例,B1G相当于冠军可以直接进的英超,而Ivy相当于没有这种资格的小联赛例如比甲。
具体级别是这样的:
<img src="s://pic4.zhimg/6ca6b0e14101e08f12a7901ea48f756b_b.png" data-rawwidth="990" data-rawheight="581" class="origin_image zh-lightbox-thumb" width="990" data-original="s://pic4.zhimg/6ca6b0e14101e08f12a7901ea48f756b_r.png">
第二个区别:和本质没关系,但是经过历史的发展,B1G和Ivy这两个名词的含义有了变化。由于Ivy的八所学校都在学术上很有作为,因此Ivy代指“好学校”的这个义项已经快要超越它本质“体育联赛”这个义项了。B1G却很少被用来指代学校的学术方面(偶尔有,后面会说),但是B1G却成立了一个成员学校名单几乎一模一样的姊妹组织CIC(学术版B1G),专门是以学术合作为目的,这又是Ivy所没有的。
3. B1G、Ivy、UC系统、SUNY系统列在一起比较,是非常不科学的。B1G和Ivy是联赛,而UC和SUNY是大学系统。区别是什么呢?
比如Ivy这八个学校,哈佛、耶鲁、康奈尔、布朗等等,他们在一起形成的Ivy实际上是一个相对松散的组织(特别是在没有比赛的时候)。但是UC呢?UC是一个州立大学系统。虽然伯克利、UCLA、UC Santa Barbara等等互相独立性很强,几乎和独立院校没有区别,但是名义上,他们的上面还有一个加州大学的总校长,因此这10个UC大学是实实在在关联在一起的。加州大学有个总校长,但是Ivy没听说过有个"常青藤大学校长"吧?换句话说,UC是实的而Ivy是虚的。
SUNY也一样,是纽约的一个州立大学系统。宾厄姆顿、石溪、布法罗、奥尔巴尼等等,都是这个州立系统的成员。每个州都有这样的州立系统。有的州只有一个,例如威斯康辛的Univ of Wisconsin系统和怀俄明的U of Wyoming系统。有的州还不止一个。例如加州就有UC系统和Cal State系统两个;德克萨斯有U of Texas系统、Texas A&M系统、Houston系统、Northern Texas系统等等一共六个;宾夕法尼亚最多,除了Penn State系统和Pittsburgh系统两个大的以外,还有Temple、Lincoln、Indiana UPenn、California UPenn、Lock Hen UPenn等等十来个小系统。
还有一种方式可以区分开UC等系统和B1G等联盟的区别。那就是:系统的各个大学可能参加的是不同联赛。还是以UC系统为例:伯克利和UCLA参加的是Pac-12的联赛,而圣芭芭拉、欧文和戴维斯参加的是Mountain West或Big West的联赛。SUNY有点特殊,除了布法罗和石溪参加了Big East以外,其它的分校自己组成了一个SUNY联赛。但是这个SUNY联赛和SUNY系统虽然容易混淆,但本质上是两个不同的东西。
十大联盟(Big Ten Conference)为什么这么多人吹捧?
我们首先看一下十大联盟都有些什么学校:
密歇根大学 University of Michigan(Michigan)
伊利诺伊大学香槟分校 University of Illinois at Urbana Champaign(Illinois)
俄亥俄州立大学 Ohio State University(Ohio State)
印第安纳大学布卢明顿分校 Indiana University Bloomington(Indiana)
普渡大学 Purdue University(Purdue)
威斯康辛大学麦迪逊分校 University of Wisconsin Madison(Wisconsin)
西北大学 Northwestern University(Northwestern)
爱荷华大学 University of Iowa(Iowa)
明尼苏达大学 University of Minnesota(Minnesota)
密歇根州立大学 Michigan State University(MSU)
宾夕法尼亚州立大学 Pennsylvania State University(Penn State)
内布拉斯加大学林肯分校 University of Nebraska Lincoln(Nebraska)
罗格斯大学 Rutgers State University of New Jersey(Rutgers)
马里兰大学帕克分校 University of Maryland College Park(Maryland)
这些学校有什么特点?
1. 大多数位于中西部-五大湖地区。和东海岸以及加州不一样,中西部-五大湖地区平均每个州的学校数量要少一些。一个州里面出现四五个强队的概率也要少一些,因此球迷更容易集中火力,支持B1G这些球队。
2. 大多数是学生和校友人数众多的大型公立大学。球迷基数自然而然就有了。然后除了ESPN等体育台以外,B1G自己的直播电视台BTN也办得很出色,也对这个联赛起到宣传的作用。
3. 虽然名气赶不上8个常青藤,但是这些B1G学校都是不错的大学,凝聚力都很强。在体育比赛处于低谷的时候,很多B1G的铁粉就转战吹学术,说B1G就是西北大学和芝加哥大学带着一帮子Public Ivy(公立常青藤)一起玩,不仅在比赛里,而且在学术上也是数一数二的联盟,球迷和学生都是最聪明的。而其它的几个大联赛,虽然也有好学校,例如ACC有杜克、北卡和弗吉尼亚、Pac-12有斯坦福、伯克利、UCLA、南加州和华盛顿、Big12有莱斯、德州奥斯丁和农工,但是那些联赛里面也有不是那么优秀的成员。并且B1G还有个学术版(CIC),这是其它联赛所没有的。
4.这些学校的橄榄球、篮球、棒球、冰球(美国人最爱的四大运动项目)的平均实力都不弱。橄榄球、冰球和篮球的平均实力还都很强。就拿橄榄球来说,Michigan是目前为止,全美国累计赢球场次最多、胜率第三高的球队,有13个全国总冠军,是第一个拿到全国总冠军的非常青藤球队,赢下过第一届玫瑰碗。Ohio State一直是全国夺冠热门,赢下了改版后的第一个全国冠军,出产过最多的全国最佳球员。MSU也是近几年的夺冠热门,赢下了第100届玫瑰碗。Penn State是最坚持传统的球队,也有7次全国冠军。并且,这些球队很多都拥有魔鬼主场。西半球第1、2、4大的球场分别是密歇根大学的Michigan球场、宾州州立的Beer球场和俄亥俄州立的Ohio球场。
5.这些大学的建校历史也不短,因此互相之间有很多很多的故事。例如1960-10年代,密歇根大学和俄亥俄州立大学之间的“十年战争”。两队当时是全国实力最强的两支队伍,拥有最好的教练(Michigan的薄辛巴克勒和Ohio State的伍迪海耶斯),他们之间的德比战被评为20世纪最火爆的宿敌对抗。这10年,Michigan和Ohio State让B1G成为全国橄榄球赛事的焦点,吸来了一大堆粉丝。1993年Penn State加入B1G,再度让B1G的影响力提升了一个档次,因为当时Penn State的教练是历史上最佳大学橄榄球教练乔老爹。21世纪以来,Nebraska的加入带来了不少中部的球迷,而Maryland和Rutgers(橄榄球发源地)的加入更是带来了东海岸的球迷。历史悠久也带来了诸多的死敌对抗,例如Michigan vs Ohio State、Michigan vs Michigan State、Michigan vs Minnesota、Ohio State vs Penn State、Ohio State vs Illinois、Ohio State vs Northwestern、Ohio State vs Michigan State、Penn State vs Michigan State、Northwestern vs Illinois、Northwestern vs Iowa、Nebraska vs Iowa、Purdue vs Indiana、Northwestern vs Wisconsin、Minnesota vs Wisconsin、Nebraska vs Penn State、Maryland vs Penn State、Maryland vs Rutgers等等都是宿敌德比对抗。作为体育联赛,拥有实力出众的球队,火爆的德比对抗,那当然就会有人追捧了。因此B1G追捧的人很多也不足为奇了。
为什么有14个大学?JHU到底有没有加入?UChicago为何退出?
我想题主是想问为什么14个大学却还叫Big Ten吧?Big Ten成立于1896年,1917年开始直到1950年代都一直是10个成员:Michigan、Northwestern、Chicago、Illinois、Minnesota、Iowa、Wisconsin、Ohio State、Purdue和Indiana。这就是为什么叫Big Ten。后来Chicago退出之后剩下了9个成员,但是没过两三年MSU就加入了,又回到了10个。这个阵容一直保持到了1993年,Penn State加入成为第11个成员。然后2011年Nebraska加入、2013年Maryland和Rutgers加入,这才是14个成员。从1917年Ohio State加入一直到1993年Penn State加入,这期间B1G基本上都是10个成员,因此就叫Big Ten了。其它很多联赛(典型的例如Pac-12)每增加或减少成员就改名,造成了很多不便。Big Ten不改名实际上是很明智的一种做法。
约翰霍普金斯大学Johns Hopkins在2013年部分加入了B1G,只参与B1G的袋棍球项目的联赛。但是JHU也加入了学术版的B1G(即CIC)。因此学术版的联盟一共有17个成员:14个B1G+前成员Chicago+非正式成员JHU+不知道为什么加进来的University of Illinois at Chicago。至于Chicago为什么退出,很有意思。现在Chicago这个学校的各种声誉都和Ivy那些学校是一个档次的。最初,Chicago在体育上也和Ivy那些一样,对校际比赛相当重视。最初在B1G挑大梁的就是Chicago和Michigan两个学校,他们互为死敌,也是B1G最强的两支球队。
二战以后,Ivy的学校突然觉得橄榄球这些校际项目没意思了。而且为了招募最好的球员,他们必须降低学术上的录取标准。这让Ivy那些学校很不爽。后来他们就放弃了橄榄球的优势。虽然保留了球队,但是不会为了好球员而降低录取标准,以保证自己的学术声誉。Chicago一看觉得诶这样很有道理!而且同时,Chicago的同城死敌Northwestern迅速崛起,让Chicago感到了压力。因此Chicago就决定不和这帮公立哥们儿玩儿了,所以就自己退出了B1G,玩儿学术去了。
Notre Dame位置那么靠谱,实力也不俗,为何不加入?
这个问题很有水平!B1G在Penn State加入后,成了11个球队的联赛,赛程不好排。于是B1G邀请和这帮公立常青藤哥们儿各方面都长得差不多的德州奥斯丁大学Texas加入,但是Texas以距离太远而拒绝(确实是个能够理解的理由)。然后B1G又邀请Notre Dame。Notre Dame地理位置就在五大湖,是B1G的地盘。虽然和这堆公立大学长得不像,但是和B1G里目前唯一的私立大学NW各方面都还挺像的(除了信仰)。而且Notre Dame和Michigan、Michigan State以及Purdue之间也有宿敌对抗的关系,NCAA橄榄球比赛的连续几个上座记录都是在Notre Dame vs Michigan的比赛里刷出来的。
这里还有一则奇闻:有一次Michigan的球队远征芝加哥打客场,路过印第安纳的一个小镇,在那里休息了几个小时。那期间Michigan的球员教会了当地的几名大学生怎么打橄榄球。后来那几个学生就在自己的学校成立了橄榄球队。而那个学校就是Notre Dame圣母大学,Michigan后来的宿敌之一(Michigan是全国累计获胜场次最多、胜率第三高;Notre Dame是累计获胜场次第二多,胜率最高)。[这是真事儿,不是戏说]
然而Notre Dame拒绝了,拒绝了,拒绝了。理由很高冷:人家要做一个自由自在的独立球队,这样才便于去西海岸找他的另一个死(ji)敌(you)南加州大学。这看起来也是个不错的理由。所以B1G就11个队搞了快20年,然后挖到了画风差不多的Nebraska加盟。
结果,结果,结果,这两年NCAA赛制改革,自由自在的独立球队进入季后赛的难度增加了。这下Notre Dame必须找个联赛加进去。然而Notre Dame并没有找B1G,而是找了东海岸的大西洋海岸联盟ACC。原因?或许是ACC是个以篮球闻名的联赛,而橄榄球的平均水平弱一些,强队少一些,因此Notre Dame如果加进去,夺冠的希望大一些吧。
有趣的数学题
典型应用题之鸡兔同笼
一,基本问题
"鸡兔同笼"是一类有名的中国古算题.最早出现在《孙子算经》中.许多小学算术应用题都可以转化成这类问题,或者用解它的典型解法--"设法"来求解.因此很有必要学会它的解法和思路.
例1 有若干只鸡和兔子,它们共有88个头,244只脚,鸡和兔各有多少只
解:我们设想,每只鸡都是"金鸡独立",一只脚站着;而每只兔子都用两条后腿,像人一样用两只脚站着.现在,地面上出现脚的总数的一半,·也就是
244÷2=122(只).
在122这个数里,鸡的头数算了一次,兔子的头数相当于算了两次.因此从122减去总头数88,剩下的就是兔子头数
122-88=34,
有34只兔子.当然鸡就有54只.
答:有兔子34只,鸡54只.
上面的计算,可以归结为下面算式:
总脚数÷2-总头数=兔子数.
上面的解法是《孙子算经》中记载的.做一次除法和一次减法,马上能求出兔子数,多简单!能够这样算,主要利用了兔和鸡的脚数分别是4和2,4又是2的2倍.可是,当其他问题转化成这类问题时,"脚数"就不一定是4和2,上面的计算方法就行不通.因此,我们对这类问题给出一种一般解法.
还说例1.
如果设想88只都是兔子,那么就有4×88只脚,比244只脚多了
88×4-244=108(只).
每只鸡比兔子少(4-2)只脚,所以共有鸡
(88×4-244)÷(4-2)= 54(只).
说明我们设想的88只"兔子"中,有54只不是兔子.而是鸡.因此可以列出公式
鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数).
当然,我们也可以设想88只都是"鸡",那么共有脚2×88=176(只),比244只脚少了
244-176=68(只).
每只鸡比每只兔子少(4-2)只脚,
68÷2=34(只).
说明设想中的"鸡",有34只是兔子,也可以列出公式
兔数=(总脚数-鸡脚数×总头数)÷(兔脚数-鸡脚数).
上面两个公式不必都用,用其中一个算出兔数或鸡数,再用总头数去减,就知道另一个数.
设全是鸡,或者全是兔,通常用这样的思路求解,有人称为"设法".
现在,拿一个具体问题来试试上面的公式.
例2 红铅笔每支0.19元,蓝铅笔每支0.11元,两种铅笔共买了16支,花了2.80元.问红,蓝铅笔各买几支
解:以"分"作为钱的单位.我们设想,一种"鸡"有11只脚,一种"兔子"有19只脚,它们共有16个头,280只脚.
现在已经把买铅笔问题,转化成"鸡兔同笼"问题了.利用上面算兔数公式,就有
蓝笔数=(19×16-280)÷(19-11)
=24÷8
=3(支).
红笔数=16-3=13(支).
答:买了13支红铅笔和3支蓝铅笔.
对于这类问题的计算,常常可以利用已知脚数的特殊性.例2中的"脚数"19与11之和是30.我们也可以设想16只中,8只是"兔子",8只是"鸡",根据这一设想,脚数是
8×(11+19)=240.
比280少40.
40÷(19-11)=5.
就知道设想中的8只"鸡"应少5只,也就是"鸡"(蓝铅笔)数是3.
30×8比19×16或11×16要容易计算些.利用已知数的特殊性,靠心算来完成计算.
实际上,可以任意设想一个方便的兔数或鸡数.例如,设想16只中,"兔数"为10,"鸡数"为6,就有脚数
19×10+11×6=256.
比280少24.
24÷(19-11)=3,
就知道设想6只"鸡",要少3只.
要使设想的数,能给计算带来方便,常常取决于你的心算本领.
下面再举四个稍有难度的例子.
例3 一份稿件,甲单独打字需6小时完成.乙单独打字需10小时完成,现在甲单独打若干小时后,因有事由乙接着打完,共用了7小时.甲打字用了多少小时
解:我们把这份稿件平均分成30份(30是6和10的最小公倍数),甲每小时打30÷6=5(份),乙每小时打30÷10=3(份).
现在把甲打字的时间看成"兔"头数,乙打字的时间看成"鸡"头数,总头数是7."兔"的脚数是5,"鸡"的脚数是3,总脚数是30,就把问题转化成"鸡兔同笼"问题了.
根据前面的公式
"兔"数=(30-3×7)÷(5-3)
=4.5,
"鸡"数=7-4.5
=2.5,
也就是甲打字用了4.5小时,乙打字用了2.5小时.
答:甲打字用了4小时30分.
例4 今年是1998年,父母年龄(整数)和是78岁,兄弟的年龄和是17岁.四年后(2002年)父的年龄是弟的年龄的4倍,母的年龄是兄的年龄的3倍.那么当父的年龄是兄的年龄的3倍时,是公元哪一年
解:4年后,两人年龄和都要加8.此时兄弟年龄之和是17+8=25,父母年龄之和是78+8=86.我们可以把兄的年龄看作"鸡"头数,弟的年龄看作"兔"头数.25是"总头数".86是"总脚数".根据公式,兄的年龄是
(25×4-86)÷(4-3)=14(岁).
1998年,兄年龄是
14-4=10(岁).
父年龄是
(25-14)×4-4=40(岁).
因此,当父的年龄是兄的年龄的3倍时,兄的年龄是
(40-10)÷(3-1)=15(岁).
这是2003年.
答:公元2003年时,父年龄是兄年龄的3倍.
例5 蜘蛛有8条腿,蜻蜓有6条腿和2对翅膀,蝉有6条腿和1对翅膀.现在这三种小虫共18只,有118条腿和20对翅膀.每种小虫各几只
解:因为蜻蜓和蝉都有6条腿,所以从腿的数目来考虑,可以把小虫分成"8条腿"与"6条腿"两种.利用公式就可以算出8条腿的
蜘蛛数=(118-6×18)÷(8-6)
=5(只).
因此就知道6条腿的小虫共
18-5=13(只).
也就是蜻蜓和蝉共有13只,它们共有20对翅膀.再利用一次公式
蝉数=(13×2-20)÷(2-1)=6(只).
因此蜻蜓数是13-6=7(只).
答:有5只蜘蛛,7只蜻蜓,6只蝉.
例6 某次数学考试考五道题,全班52人参加,共做对181道题,已知每人至少做对1道题,做对1道的有7人,5道全对的有6人,做对2道和3道的人数一样多,那么做对4道的人数有多少人
解:对2道,3道,4道题的人共有
52-7-6=39(人).
他们共做对
181-1×7-5×6=144(道).
由于对2道和3道题的人数一样多,我们就可以把他们看作是对2.5道题的人((2+3)÷2=2.5).这样
兔脚数=4,鸡脚数=2.5,
总脚数=144,总头数=39.
对4道题的有
(144-2.5×39)÷(4-1.5)=31(人).
答:做对4道题的有31人.
习题一
1.龟鹤共有100个头,350只脚.龟,鹤各多少只
2.学校有象棋,跳棋共26副,恰好可供120个学生同时进行活动.象棋2人下一副棋,跳棋6人下一副.象棋和跳棋各有几副
3.一些2分和5分的硬币,共值2.99元,其中2分硬币个数是5分硬币个数的4倍,问5分硬币有多少个
4.某人领得工资240元,有2元,5元,10元三种人民币,共50张,其中2元与5元的张数一样多.那么2元,5元,10元各有多少张
5.一件工程,甲单独做12天完成,乙单独做18天完成,现在甲做了若干天后,再由乙接着单独做完余下的部分,这样前后共用了16天.甲先做了多少天
6.摩托车赛全程长281千米,全程被划分成若干个阶段,每一阶段中,有的是由一段上坡路(3千米),一段平路(4千米),一段下坡路(2千米)和一段平路(4千米)组成的;有的是由一段上坡路(3千米),一段下坡路(2千米)和一段平路(4千米)组成的.已知摩托车跑完全程后,共跑了25段上坡路.全程中包含这两种阶段各几段
7.用1元钱买4分,8分,1角的邮票共15张,问最多可以买1角的邮票多少张
二,"两数之差"的问题
鸡兔同笼中的总头数是"两数之和",如果把条件换成"两数之差",又应该怎样去解呢
例7 买一些4分和8分的邮票,共花6元8角.已知8分的邮票比4分的邮票多40张,那么两种邮票各买了多少张
解一:如果拿出40张8分的邮票,余下的邮票中8分与4分的张数就一样多.
(680-8×40)÷(8+4)=30(张),
这就知道,余下的邮票中,8分和4分的各有30张.
因此8分邮票有
40+30=70(张).
答:买了8分的邮票70张,4分的邮票30张.
也可以用任意设一个数的办法.
解二:譬如,设有20张4分,根据条件"8分比4分多40张",那么应有60张8分.以"分"作为计算单位,此时邮票总值是
4×20+8×60=560.
比680少,因此还要增加邮票.为了保持"差"是40,每增加1张4分,就要增加1张8分,每种要增加的张数是
(680-4×20-8×60)÷(4+8)=10(张).
因此4分有20+10=30(张),8分有60+10=70(张).
例8 一项工程,如果全是晴天,15天可以完成.倘若下雨,雨天一天
工程要多少天才能完成
解:类似于例3,我们设工程的全部工作量是150份,晴天每天完成10份,雨天每天完成8份.用上一例题解一的方法,晴天有
(150-8×3)÷(10+8)= 7(天).
雨天是7+3=10天,总共
7+10=17(天).
答:这项工程17天完成.
请注意,如果把"雨天比晴天多3天"去掉,而换成已知工程是17天完成,由此又回到上一节的问题.差是3,与和是17,知道其一,就能推算出另一个.这说明了例7,例8与上一节基本问题之间的关系.
总脚数是"两数之和",如果把条件换成"两数之差",又应该怎样去解呢
例9 鸡与兔共100只,鸡的脚数比兔的脚数少28.问鸡与兔各几只
解一:如再补上28只鸡脚,也就是再有鸡28÷2=14(只),鸡与兔脚数就相等,兔的脚是鸡的脚4÷2=2(倍),于是鸡的只数是兔的只数的2倍.兔的只数是
(100+28÷2)÷(2+1)=38(只).
鸡是
100-38=62(只).
答:鸡62只,兔38只.
当然也可以去掉兔28÷4=7(只).兔的只数是
(100-28÷4)÷(2+1)+7=38(只).
也可以用任意设一个数的办法.
解二:设有50只鸡,就有兔100-50=50(只).此时脚数之差是
4×50-2×50=100,
比28多了72.就说明设的兔数多了(鸡数少了).为了保持总数是100,一只兔换成一只鸡,少了4只兔脚,多了2只鸡脚,相差为6只(千万注意,不是2).因此要减少的兔数是
(100-28)÷(4+2)=12(只).
兔只数是
50-12=38(只).
另外,还存在下面这样的问题:总头数换成"两数之差",总脚数也换成"两数之差".
例10 古诗中,五言绝句是四句诗,每句都是五个字;七言绝句是四句诗,每句都是七个字.有一诗选集,其中五言绝句比七言绝句多13首,总字数却反而少了20个字.问两种诗各多少首.
解一:如果去掉13首五言绝句,两种诗首数就相等,此时字数相差
13×5×4+20=280(字).
每首字数相差
7×4-5×4=8(字).
因此,七言绝句有
28÷(28-20)=35(首).
五言绝句有
35+13=48(首).
答:五言绝句48首,七言绝句35首.
解二:设五言绝句是23首,那么根据相差13首,七言绝句是10首.字数分别是20×23=460(字),28×10=280(字),五言绝句的字数,反而多了
460-280=180(字).
与题目中"少20字"相差
180+20=200(字).
说明设诗的首数少了.为了保持相差13首,增加一首五言绝句,也要增一首七言绝句,而字数相差增加8.因此五言绝句的首数要比设增加
200÷8=25(首).
五言绝句有
23+25=48(首).
七言绝句有
10+25=35(首).
在写出"鸡兔同笼"公式的时候,我们设都是兔,或者都是鸡,对于例7,例9和例10三个问题,当然也可以这样设.现在来具体做一下,把列出的计算式子与"鸡兔同笼"公式对照一下,就会发现非常有趣的事.
例7,设都是8分邮票,4分邮票张数是
(680-8×40)÷(8+4)=30(张).
例9,设都是兔,鸡的只数是
(100×4-28)÷(4+2)=62(只).
10,设都是五言绝句,七言绝句的首数是
(20×13+20)÷(28-20)=35(首).
首先,请读者先弄明白上面三个算式的由来,然后与"鸡兔同笼"公式比较,这三个算式只是有一处"-"成了"+".其奥妙何在呢
当你进入初中,有了负数的概念,并会列二元一次方程组,就会明白,从数学上说,这一讲前两节列举的所有例子都是同一件事.
例11 有一辆货车运输2000只玻璃瓶,运费按到达时完好的瓶子数目计算,每只2角,如有破损,破损瓶子不给运费,还要每只赔偿1元.结果得到运费379.6元,问这次搬运中玻璃瓶破损了几只
解:如果没有破损,运费应是400元.但破损一只要减少1+0.2=1.2(元).因此破损只数是
(400-379.6)÷(1+0.2)=17(只).
答:这次搬运中破损了17只玻璃瓶.
请你想一想,这是"鸡兔同笼"同一类型的问题吗
例12 有两次自然测验,第一次24道题,答对1题得5分,答错(包含不答)1题倒扣1分;第二次15道题,答对1题8分,答错或不答1题倒扣2分,小明两次测验共答对30道题,但第一次测验得分比第二次测验得分多10分,问小明两次测验各得多少分
解一:如果小明第一次测验24题全对,得5×24=120(分).那么第二次只做对30-24=6(题)得分是
8×6-2×(15-6)=30(分).
两次相差
120-30=90(分).
比题目中条件相差10分,多了80分.说明设的第一次答对题数多了,要减少.第一次答对减少一题,少得5+1=6(分),而第二次答对增加一题不但不倒扣2分,还可得8分,因此增加8+2=10分.两者两差数就可减少
6+10=16(分).
(90-10)÷(6+10)=5(题).
因此,第一次答对题数要比设(全对)减少5题,也就是第一次答对19题,第二次答对30-19=11(题).
第一次得分
5×19-1×(24- 9)=90.
第二次得分
8×11-2×(15-11)=80.
答:第一次得90分,第二次得80分.
解二:答对30题,也就是两次共答错
24+15-30=9(题).
第一次答错一题,要从满分中扣去5+1=6(分),第二次答错一题,要从满分中扣去8+2=10(分).答错题互换一下,两次得分要相差6+10=16(分).
如果答错9题都是第一次,要从满分中扣去6×9.但两次满分都是120分.比题目中条件"第一次得分多10分",要少了6×9+10.因此,第二次答错题数是
(6×9+10)÷(6+10)=4(题)·
第一次答错 9-4=5(题).
第一次得分 5×(24-5)-1×5=90(分).
第二次得分 8×(15-4)-2×4=80(分).
习题二
1.买语文书30本,数学书24本共花83.4元.每本语文书比每本数学书贵0.44元.每本语文书和数学书的价格各是多少
2.甲茶叶每千克132元,乙茶叶每千克96元,共买这两种茶叶12千克.甲茶叶所花的钱比乙茶叶所花钱少354元.问每种茶叶各买多少千克
3.一辆卡车运矿石,晴天每天可运16次,雨天每天只能运11次.一连运了若干天,有晴天,也有雨天.其中雨天比晴天多3天,但运的次数却比晴天运的次数少27次.问一连运了多少天
4.某次数学测验共20道题,做对一题得5分,做错一题倒扣1分,不做得0分.小华得了76分.问小华做对了几道题
5.甲,乙二人射击,若命中,甲得4分,乙得5分;若不中,甲失2分,乙失3分.每人各射10发,共命中14发.结算分数时,甲比乙多10分.问甲,乙各中几发
6.甲,乙两地相距12千米.小张从甲地到乙地,在停留半小时后,又从乙地返回甲地,小王从乙地到甲地,在甲地停留40分钟后,又从甲地返回乙地.已知两人同时分别从甲,乙两地出发,经过4小时后,他们在返回的途中相遇.如果小张速度比小王速度每小时多走1.5千米,求两人的速度.
三,从"三"到"二"
"鸡"和"兔"是两种东西,实际上还有三种或者更多种东西的类似问题.在第一节例5和例6就都有三种东西.从这两个例子的解法,也可以看出,要把"三种"转化成"二种"来考虑.这一节要通过一些例题,告诉大家两类转化的方法.
例13 学校组织新年游艺晚会,用于奖品的铅笔,圆珠笔和钢笔共232支,共花了300元.其中铅笔数量是圆珠笔的4倍.已知铅笔每支0.60元,圆珠笔每支2.7元,钢笔每支6.3元.问三种笔各有多少支
解:从条件"铅笔数量是圆珠笔的4倍",这两种笔可并成一种笔,四支铅笔和一支圆珠笔成一组,这一组的笔,每支价格算作
(0.60×4+2.7)÷5=1.02(元).
现在转化成价格为1.02和6.3两种笔.用"鸡兔同笼"公式可算出,钢笔支数是
(300-1.02×232)÷(6.3-1.02)=12(支).
铅笔和圆珠笔共
232-12=220(支).
其中圆珠笔
220÷(4+1)=44(支).
铅笔
220-44=176(支).
答:其中钢笔12支,圆珠笔44支,铅笔176支.
例14 商店出售大,中,小气球,大球每个3元,中球每个1.5元,小球每个1元.张老师用120元共买了55个球,其中买中球的钱与买小球的钱恰好一样多.问每种球各买几个
解:因为总钱数是整数,大,小球的价钱也都是整数,所以买中球的钱数是整数,而且还是3的整数倍.我们设想买中球,小球钱中各出3元.就可买2个中球,3个小球.因此,可以把这两种球看作一种,每个价钱是
(1.5×2+1×3)÷(2+3)=1.2(元).
从公式可算出,大球个数是
(120-1.2×55)÷(3-1.2)=30(个).
买中,小球钱数各是
(120-30×3)÷2=15(元).
可买10个中球,15个小球.
答:买大球30个,中球10个,小球15个.
例13是从两种东西的个数之间倍数关系,例14是从两种东西的总钱数之间相等关系(倍数关系也可用类似方法),把两种东西合井成一种考虑,实质上都是求两种东西的平均价,就把"三"转化成"二"了.
例15是为例16作准备.
例15 某人去时上坡速度为每小时走3千米,回来时下坡速度为每小时走6千米,求他的平均速度是多少
解:去和回来走的距离一样多.这是我们考虑问题的前提.
平均速度=所行距离÷所用时间
去时走1千米,要用20分钟;回来时走1千米,要用10分钟.来回共走2千米,用了30分钟,即半小时,平均速度是每小时走4千米.
千万注意,平均速度不是两个速度的平均值:每小时走(6+3)÷2=4.5千米.
例16 从甲地至乙地全长45千米,有上坡路,平路,下坡路.李强上坡速度是每小时3千米,平路上速度是每小时5千米,下坡速度是每小时6千米.从甲地到乙地,李强行走了10小时;从乙地到甲地,李强行走了11小时.问从甲地到乙地,各种路段分别是多少千米
解:把来回路程45×2=90(千米)算作全程.去时上坡,回来是下坡;去时下坡回来时上坡.把上坡和下坡合并成"一种"路程,根据例15,平均速度是每小时4千米.现在形成一个非常简单的"鸡兔同笼"问题.头数10+11=21,总脚数90,鸡,兔脚数分别是4和5.因此平路所用时间是
(90-4×21)÷(5-4)=6(小时).
单程平路行走时间是6÷2=3(小时).
从甲地至乙地,上坡和下坡用了10-3=7(小时)行走路程是
45-5×3=30(千米).
又是一个"鸡兔同笼"问题.从甲地至乙地,上坡行走的时间是
(6×7-30)÷(6-3)=4(小时).
行走路程是3×4=12(千米).
下坡行走的时间是7-4=3(小时).行走路程是6×3=18(千米).
答:从甲地至乙地,上坡12千米,平路15千米,下坡18千米.
做两次"鸡兔同笼"的解法,也可以叫"两重鸡兔同笼问题".例16是非常典型的例题.
例17 某种考试已举行了24次,共出了426题.每次出的题数,有25题,或者16题,或者20题.那么,其中考25题的有多少次
解:如果每次都考16题,16×24=384,比426少42道题.
每次考25道题,就要多25-16=9(道).
每次考20道题,就要多20-16=4(道).
就有
9×考25题的次数+4×考20题的次数=42.
请注意,4和42都是偶数,9×考25题次数也必须是偶数,因此,考25题的次数是偶数,由9×6=54比42大,考25题的次数,只能是0,2,4这三个数.由于42不能被4整除,0和4都不合适.只能是考25题有2次(考20题有6次).
答:其中考25题有2次.
例18 有50位同学前往参观,乘电车前往每人1.2元,乘小巴前往每人4元,乘地下铁路前往每人6元.这些同学共用了车费110元,问其中乘小巴的同学有多少位
解:由于总钱数110元是整数,小巴和地铁票也都是整数,因此乘电车前往的人数一定是5的整数倍.
如果有30人乘电车,
110-1.2×30=74(元).
还余下50-30=20(人)都乘小巴钱也不够.说明设的乘电车人数少了.
如果有40人乘电车
110-1.2×40=62(元).
还余下50-40=10(人)都乘地下铁路前往,钱还有多(62>6×10).说明设的乘电车人数又多了.30至40之间,只有35是5的整数倍.
现在又可以转化成"鸡兔同笼"了:
总头数 50-35=15,
总脚数 110-1.2×35=68.
因此,乘小巴前往的人数是
(6×15-68)÷(6-4)=11.
答:乘小巴前往的同学有11位.
在"三"转化为"二"时,例13,例14,例16是一种类型.利用题目中数量比例关系,把两种东西合并组成一种.例17,例18是另一种类型.充分利用所求个数是整数,以及总量的限制,其中某一个数只能是几个数值.对几个数值逐一考虑是否符合题目的条件.确定了一个个数,也就变成"二"的问题了.在小学算术的范围内,学习这两种类型已足够了.更复杂的问题,只能借助中学的三元一次方程组等代数方法去求解.
习题三
1.有100枚硬币,把其中2分硬币全换成等值的5分硬币,硬币总数变成79个,然后又把其中的1分硬币换成等值的5分硬币,硬币总数变成63个.求原有2分及5分硬币共值多少钱
2."京剧公演"共出售750张票得22200元.甲票每张60元,乙票每张30元,丙票每张18元.其中丙票张数是乙票张数的2倍.问其中甲票有多少张
3.小明参加数学竞赛,共做20题得67分.已知做一题得5分,不答得2分,做错一题倒扣3分.又知道他做错的题和没答的题一样多.问小明共做对几题
4.1分,2分和5分硬币共100枚,价值2元,如果其中2分硬币的价值比1分硬币的价值多13分.问三种硬币各多少枚
注:此题没有学过分数运算的同学可以不做.
5.甲地与乙地相距24千米.某人从甲地到乙地往返行走.上坡速度每小时4千米,走平路速度每小时5千米,下坡速度每小时6千米.去时行走了4小时50分,回来时用了5小时.问从甲地到乙地,上坡,平路,下坡各多少千米
6.某学校有12间宿舍,住着80个学生.宿舍的大小有三种:大的住8个学生,不大不小的住7个学生,小的住5人.其中不大不小的宿舍最多,问这样的宿舍有几间
测验题
1.松鼠妈妈松籽,晴天每天可以20个,雨天每天只能12个. 它一连几天了112个松籽,平均每天14个. 问这几天当中有几天有雨
2.有一水池,只打开甲水龙头要24分钟注满水池,只打开乙水龙头要36分钟才注满水池.现在先打开甲水龙头几分钟,然后关掉甲,打开乙水龙头把水池注满.已知乙水龙头比甲水龙头多开26分钟.问注满水池总共用了多少分钟
3.某工程甲队独做50天可以完成,乙队独做75天可以完成.现在两队合做,但是中途乙队因另有任务调离了若干天.从开工后40天才把这项工程做完.问乙队中途离开了多少天
4.小华从家到学校,步行一段路后就跑步.他步行速度是每分钟600 ,跑步速度是每分钟140米.虽然步行时间比跑步时间多4分钟,但步行的距离却比跑步的距离少400米.问从家到学校多远
5.有16位教授,有人带1个研究生,有人带2个研究生,也有人带3个研究生.他们共带了27位研究生.其中带1个研究生的教授人数与带2,3个研究生的教授人数一样多.问带2个研究生的教授有几人
6.某商场为招揽顾客举办购物抽奖.奖金有三种:一等奖1000元,二等奖250元,三等奖50元.共有100人中奖,奖金总额为9500元.问二等奖有多少名
7.有一堆硬币,面值为1分,2分,5分三种,其中1分硬币个数是2分硬币个数的11倍.已知这堆硬币面值总和是1元,问5分的硬币有多少个
第三讲 答案
习题一
1.龟75只,鹤25只.
2.象棋9副,跳棋17副.
3.2分硬币92个,5分硬币23个.
应将总钱数2.99元分成2×4+5=13(份),其中2分钱数占2×4=8(份),5分钱数占5份.
4.2元与5元各20张,10元有10张.
2元与5元的张数之和是
(10×50-240)÷[10-(2+5)÷2]=40(张).
5.甲先做了4天.
提示:把这件工程设为36份,甲每天做3份,乙每天做2份.
6.第一种路段有14段,第二种路段有11段.
第一种路段全长13千米,第二种路段全长9千米,全赛程281千米,共25段,是标准的"鸡兔同笼".
7.最多可买1角邮票6张.
设都买4分邮票,共用4×15=60(分),就多余100-60=40(分).买一张1角邮票,可以认为40分换1角,要多6分.40÷6=6……4,最多买6张.最后多余4分,加在一张4分邮票上,恰好买一张8分邮票.
习题二
1.语文书1.74元,数学书1.30元.
设想语文书每本便宜0.44元,因此数学书的单价是
(83.4-0.44×30)÷(30+24).
2.买甲茶3.5千克,乙茶8.5千克.
甲茶数=(96×12-354)÷(132+96)=3.5(千克)
3.一连运了27天.
晴天数=(11×3+27)÷(16-11)=12(天)
4.小华做对了16题.
76分比满分100分少24分.做错一题少6分,不做少5分.24分只能是6×4.
5.甲中8发,乙中6发.
设甲中10发,乙就中14-10=4(发).甲得4×10=40(分),乙得5×4-3×6= 2(分).比题目条件"甲比乙多10分"相差(40-2)-10=28(分),甲少中1发,少4+2=6(分),乙可增5+3=8(分).
28÷(6+8)=2.
甲中10-2=8(发).
6.小张速度每小时6千米,小王速度每小时4.5千米.
王的速度是每小时
注:为了避免分数运算,路程以米为单位,时间以分钟为单位,就可以达到目的.
1、旅客在车站候车室等车,并且排队的乘客按一定速度增加,检查速度也一定,当车站放一个检票口,需用半小时把所有乘客解决完毕,当开放2个检票口时,只要10分钟就把所有乘客OK了 求增加人数的速度还有原来的人数
设一个检票口一分钟一个人
1个检票口30分钟30个人
2个检票口10分钟20个人
(30-20)÷(30-10)=0.5个人
原有1×30-30×0.5=15人
或2×10-10×0.5=15人
2、有三块草地,面积分别是5,15,24亩。草地上的草一样厚,而且长得一样快。第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天,问第三块地可供多少头牛吃80天?
这是一道牛吃草问题,是比较复杂的牛吃草问题。
把每头牛每天吃的草看作1份。
因为第一块草地5亩面积原有草量+5亩面积30天长的草=10×30=300份
所以每亩面积原有草量和每亩面积30天长的草是300÷5=60份
因为第二块草地15亩面积原有草量+15亩面积45天长的草=28×45=1260份
所以每亩面积原有草量和每亩面积45天长的草是1260÷15=84份
所以45-30=15天,每亩面积长84-60=24份
所以,每亩面积每天长24÷15=1.6份
所以,每亩原有草量60-30×1.6=12份
第三块地面积是24亩,所以每天要长1.6×24=38.4份,原有草就有24×12=288份
新生长的每天就要用38.4头牛去吃,其余的牛每天去吃原有的草,那么原有的草就要够吃80天,因此288÷80=3.6头牛
所以,一共需要38.4+3.6=42头牛来吃。
两种解法:
解法一:
设每头牛每天的吃草量为1,则每亩30天的总草量为:10*30/5=60;每亩45天的总草量为:28*45/15=84那么每亩每天的新生长草量为(84-60)/(45-30)=1.6每亩原有草量为60-1.6*30=12,那么24亩原有草量为12*24=288,24亩80天新长草量为24*1.6*80=3072,24亩80天共有草量3072+288=3360,所有3360/80=42(头)
解法二:10头牛30天吃5亩可推出30头牛30天吃15亩,根据28头牛45天吃15木,可以推出15亩每天新长草量 (28×45-30×30)/(45-30)=24;15亩原有草量:1260-24×45=180;15亩80天所需牛180/80+24(头)24亩需牛:(180/80+24)*(24/15)=42头
在全民健身环城越野赛中,甲乙两选手的行程y(千米)随时间(时)变化的图象(全程)如图所示.则根据图
根据图象得:
起跑后1小时内,甲在乙的前面;
乙比甲先到达终点;
设乙跑的直线解析式为:y=kx,
将点(1,10)代入得:k=10,
则解析式为:y=10x,
当x=2时,y=20,
20千米=20公里,
故两人都跑了20公里,
故答案为:甲,乙,20.
声明:本站所有文章资源内容,如无特殊说明或标注,均为采集网络资源。如若本站内容侵犯了原著者的合法权益,可联系本站删除。